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ABSTRACT
Convolutional neural networks (CNNs) can be easily over-fitted
when they are over-parametered. The popular dropout that drops
feature units randomly can’t always work well for CNNs, due to
the problem of under-dropping. To eliminate this problem, some
structural dropout methods such as SpatialDropout, Cutout and
DropBlock have been proposed. However, these methods that drop
feature units in continuous regions randomly, may have the risk
of over-dropping, thus leading to degradation of performance. To
address these issues, we propose a novel structural dropout method,
Correlation based Dropout (CorrDrop), to regularize CNNs by drop-
ping feature units based on feature correlation, which reflects the
discriminative information in feature maps. Specifically, the pro-
posed method first obtains correlation map based on the activation
in the feature maps, and then adaptively masks out those regions with
small average correlation. Thus, the proposed method can regularize
CNNs well by discarding part of contextual regions. Extensive ex-
periments on image classification demonstrate the superiority of our
method compared with other counterparts.

Index Terms— Over-fitting, Regularization, Dropout, Convolu-
tional Neural Networks

1. INTRODUCTION

Convolutional neural networks (CNNs) have been widely and suc-
cessfully used in various computer vision tasks [1, 2, 3]. In recent
years, various architectures of deep CNNs with powerful represen-
tations, such as ResNet [4], InceptionNet [5], and DenseNet [6], are
proposed to improve the performance of CNNs. It is known that net-
work parameters increase quickly with the growth of layers. Thus, it
is easy to raise the problem of over-fitting for deep CNNs especially
on small datasets. Therefore, it is worthy to develop regularization
methods to relieve the problem of over-fitting for CNNs.

Early proposed regularization methods, such as weight decay
[7], early stopping [8], data augmentation [9, 10] and dropout [11]
have been widely used in deep neural networks. Among them,
dropout has achieved immense success for fully connected networks
for its powerful regularization ability. However, recent study shows
that the traditional dropout is less effective for CNNs due to the
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Fig. 1. Masks of Dropout [11], DropBlock [12] and our CorrDrop
and the correlation heatmap produced by CorrDrop. The red regions
denote the regions to be masked. Compared with Dropout and Drop-
Block, CorrDrop takes the discriminative information into consider-
ation and drops feature units adaptively to alleviate the under- and
over-dropping problems.

problem of under-dropping, since the spatially correlated features
still allow dropped information to flow through the network [12].

To make dropout more effective for CNNs, some structural
dropout methods have recently been proposed, such as Spatial-
Dropout [13], Cutout [14], DropBlock [12] by dropping entire chan-
nels or square of regions in the input/feature space. However, these
structural dropout methods confront the risk of over-dropping, since
they drop units in continuous regions randomly, perhaps discarding
the whole of discriminative regions in the input/feature maps, thus
leading to degradation of performance. As shown in Fig. 1, tradi-
tional dropout [11] and the recently proposed DropBlock [12] have
the risk of under-dropping and over-dropping by dropping feature
units randomly.

To address above issues, motivated by the observations that dis-
criminative regions of an object would have higher feature correla-
tions (see the last row in Fig. 1), we propose a novel and effective
structual dropout: CorrDrop, which drops feature units according to
the feature correlation. In order to obtain a better regularization ef-
fect, it is more appropriate to drop the feature units adaptively based
on the discriminative information. To this end, we first compute the
feature correlation map, and then adaptively mask out those regions
with less discriminative information, i.e., regions with small fea-
ture correlation. As shown in Fig. 1, compared with Dropout and
DropBlock that result in under- and over-dropping, our CorrDrop



produces adaptive masks by discarding part of contextual seman-
tic information, thus making the network learn more compact rep-
resentations. Extensive experiments demonstrate that CorrDrop out-
performs Dropout [11] and DropBlock [12] by precisely dropping
unimportant features which encourages the network to learn mean-
ingful representation.

2. RELATED WORKS

Regularization in Deep Learning. Deep neural networks with huge
amount of parameters can be easily over-fitted, hindering the gener-
alization of the models. To solve the problem, many regularization
methods [7, 8, 11, 15, 16, 17] have been proposed in the past few
years. Among them, dropout [11] has been shown to significantly
improve the performance of deep neural networks for years. How-
ever, recent research [12] indicate that the traditional dropout suffers
from under-dropping problem when used in CNNs, since features
are locally correlated in CNNs. Later, a plenty of dropout variants
such as SpatilDropout [13], Cutout [14] and DropBlock [12] are pro-
posed. However, these methods may have the risk of over-dropping
by discarding features randomly with equal dropout probability. In-
stead, our proposed method CorrDrop alleviates these problems by
dropping feature units adaptively considering feature correlation.

Attention Mechanism. Inspired by the phenomenon that hu-
mans tend to focus on the discriminative parts of the images, at-
tention mechanism has been widely used in various fields such as
machine translation [18], image classification [19], transfer learn-
ing [20], wealy supervised object localization [21] and etc. which
greatly improves the performance. Attention mechanism considers
the correlation of the features. When the query comes in, it focuses
more on the important data. Similarly, our method takes the fea-
ture correlation into account, however, CorrDrop generates the atten-
tion map based on the correlation calculation introduced in Sec. 3.1
which does not add any additional trainable parameters and greatly
relieves the parameter overheads. Besides, CorrDrop combines at-
tention mechanism with dropout which improve the classification
performance as a new variant of regularization.

3. METHODOLOGY

Existing dropout-based methods undergo the risk of under- or over-
dropping. To render dropout more effective for CNNs, we propose
a simple but effective structural dropout: CorrDrop, which drops the
feature units adaptively based on the discriminative information. The
pipeline of our algorithm is shown in Fig. 2. Specifically, we take
feature correlation into account and assign each unit with adaptive
dropout probability according to their correlation score. In this sec-
tion, we firstly describe the calculation of feature correlation based
on feature orthogonality. Then we illustrate the strategy of corre-
lation based dropout. Finally, following the previous work Drop-
Block [12], to regularize CNNs better, we further generate structural
dropout mask by dropping the square feature regions.

3.1. Feature Correlation Calculation

In spatial dimension, we suppose that highly correlated units con-
struct the discriminative parts in the feature maps, which should be
kept with higher probability. The metric based on the feature orthog-
onality is demonstrated to be a satisfactory way to represent feature
correlation [22]. Given the feature maps of the intermediate l-th layer
asA(l) = [a

(l)
1 , ..., a

(l)
N ]T ∈ RN×C , whereN = H×W is the num-

ber of units in a feature map, C is the number of channels,H andW

are the height and width of the feature map respectively. Each row
a
(l)
i ∈ RC represents the feature vector of a unit. The correlation

calculation can be described as below,

Â(l) =
A(l)

‖A(l)‖
, (1)

P (l) = |Â(l) × Â(l)T − I|, (2)

F
(l)
i =

∑
N P

(l)
i

N
(3)

where I is an identity matrix with size N × N . We first normalize
each row of A(l) and compute the correlation scores based on the
feature orthogonality. P (l) is a matrix of size N × N and P (l)

i de-
notes i-th row of P (l). Off-diagonal elements of a row of P (l) for a
single unit denote projection of all the other units in the same fea-
ture map. The mean of each row denotes the correlation score of
each unit. The higher value of F (l)

i indicates that this unit is highly
correlated with others.

3.2. Correlation Based Dropout

To drop units adaptively based on the feature correlation, we assign
the dropout probability to each unit according to the values in F .
Generally, the higher value ofF (l)

i is, the smaller dropout probability
we have,

γ
(l)
i,j = 1−

F
(l)
i,j − F

(l)
min

F
(l)
max − F (l)

min

. (4)

To obtain the dropout probability, we normalize the correlation
score of each unit to ensure that γ(l)

i,j ∈ (0, 1). The dropout mask
M (l) ∈ RH×W is sampled from Bernoulli distribution with correla-
tion based dropout probability γ,

M
(l)
i,j = Bernoulli(1− γ(l)

i,j ). (5)

Empirically, similar to other dropout variants, a hyper-parameter the
dropout probability p is introduced to ensure the algorithm will not
drop too many units. With the correlation based dropout mask M (l),
we adjust the retain probability and generate another mask B(l) ∈
RH×W . The units are dropped when the corresponding values in
both two masks are 0 and the final dropout mask S(l) ∈ RH×W is
obtained.

p̂ =
p× numel(M (l))

numel(M (l))− sum(M (l))
, (6)

B
(l)
i,j = Bernoulli(1− p̂), (7)

S
(l)
i,j =

{
0 M

(l)
i,j = 0 and B

(l)
i,j = 0

1 otherwise
, (8)

Ã(l) = S(l) �A(l), (9)

where numel(M (l)) counts the number of units inM (l), sum(M (l))
counts the number of units where the value is 1, and � represents
the point-wise multiplication operation.

As the features are locally correlated in CNNs, it is less effective
to drop a single unit in the feature map [12]. Following the previous
work DropBlock [12] which drops continuous regions in the fea-
ture map, we further consider the correlation of each local area and
drop blocks of units. To obtain a structural mask, we firstly gather
the local information in the feature map by local average pooling
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Fig. 2. The pipeline of CorrDrop. 1) Downsample the feature maps from previous layers by spatial-wise local average pooling with kernel size
and stride of k for local features gathering and dimensional reduction. 2) A correlation map is calculated based on the feature orthogonality
introduced in Section 3.1, with which the dropout mask is sampled from Bernoulli distribution with adaptive dropout probability. 3) The
structural CorrDrop mask is generated by nearest neighbor upsampling, thus blocks with size of k × k near each zero entry in dropout mask
are dropped. 4) The CorrDrop mask is multiplied to each channel of the original feature maps to drop features.

and meanwhile reduce the dimension of the feature map for speed-
ing up the correlation calculation; and then produce the correlation
based dropout mask as illustrated before; finally generate the struc-
tural mask by nearest neighbour upsampling and drop square regions
of units. The pipeline is shown in Fig. 2. In this manner, we calcu-
late the feature correlation based on the local information and drop
square of regions with small average correlation.

The process can be mathematically described as below. When
setting the block size to k, we perform local average pooling on the
feature map with kernel size of k and stride of k. Specifically, we
scan each block with size of k×k from left to right, top to bottom in
each feature map and compute the mean of activation values in each
block, which can be described as

a
(l)′

i
′
,j

′ =

∑ k
2

k1=− k
2

∑ k
2

k2=− k
2

a
(l)
i+k1,j+k2

k2
. (10)

The resulted feature map isA(l)′ ∈ RN′×C , whereN
′
= H

′
×W

′
,

H
′
= ceil(H

k
), W

′
= ceil(W

k
). Moreover, in the implementa-

tion of nearest neighbor upsampling, every zero entry in the dropout
mask will be expanded by k2, we need to adjust the dropout prob-
ability p in order to keep every unit with dropout probability of p.
Specifically, the adjusted dropout probability p

′
can be computed by

p′ =
p

k2
H ×W
H ′ ×W ′ . (11)

Thus, we use the adjusted dropout probability p′ to sample the ini-
tial binary mask in Equ. (6). With the dropout mask S(l)′ ∈ RH′×W ′

produced based on the downsampled feature map A(l)′ , we upsam-
ple S(l)′ with nearest neighbor upsampling and drop a block of size
k × k near each zero entry in S(l)′ and produce the structural Cor-
rDrop mask S(l) ∈ RH×W . Finally the CorrDrop mask is multiplied
to each channel of the original feature maps A(l) and masks out part
of feature regions.

4. EXPERIMENTS

To evaluate the effectiveness of our CorrDrop method, we compare it
with other state-of-the-art dropout-based methods [11, 13, 12, 14] on
image classification with CIFAR-10 and CIFAR-100 [23] datasets.
In addition, we also conduct experiments on different architectures,
different choices of hyper-parameters and visualization of class acti-
vation map.

4.1. Experimental Settings

For image classification, we normalize the datasets with per-channel
mean and deviation. Standard data augmentation schemes like flip-

ping, random cropping are also incorporated. We report the highest
validation accuracy following common practice. Unless otherwise
specified, all experiments are based on ResNet20 [4] using the of-
ficial PyTorch implementation. The defalut setting of batch size is
128, the optimizer is SGD with momentum of 0.9 [24], the total
training epochs is 200 and the initial learning rate is 0.1 and is de-
cayed by the factor of 1e-1 at 0.4, 0.6, 0.8 ratio of total epochs. Fol-
lowing [12], we gradually increase the value of dropout probability
p with linear scheduler.

4.2. Classification on CIFAR-10 and CIFAR-100

In this section, we compare the regularization effect of our proposed
CorrDrop with other state-of-the-art dropout-based methods. The ex-
perimental results are shown in Table 1 and CorrDrop yields best
performace. The regularization layers are added after each convo-
lution group in ResNet20. For CorrDrop and DropBlock, we use
block size of 9, 7, 5 for three convolutional blocks respectively.
CorrDrop outperforms DropBlock consistently. This is mainly be-
cause DropBlock undergoes the risk of over-dropping by dropping
square feature regions randomly, while ours alleviate this problem
by adaptively dropping feature regions based on discriminative in-
formation. Moreover, Cutout also works well to regularize CNNs by
dropping units in the input/image space as a data augmentation tech-
nique. When combining Cutout with our CorrDrop, the test accuracy
of ResNet20 on both datasets can be further improved. The test ac-
curacy on CIFAR-10 and CIFAR-100 with different regularization
methods during training are displayed in Fig. 3. All of observations
demonstrate the effectiveness of our method.

Analysis of computation and parameters overhead. The com-
putation overhead of CorrDrop only comes from the calculation of
correlation map as introduced in Sec. 3.1. Due to the use of a local
downsampling operation, the size of the feature map is reduced. The
number of FLOPs in the training process only increase by 0.003%
compared to baseline. While in the test process, CorrDrop is closed
like Dropout, so the time complexity would not increase in testing
process.

In addition, the calculation of correlation map of CorrDrop
based on the feature orthogonality which does not add any addi-
tional trainable parameters. Thus when compared to baseline model,
model regularized with CorrDrop have the same number of parame-
ters.

4.3. Regularization on Different Architectures

To demonstrate that our method is applicable to different architec-
tures, we conduct image classification on CIFAR10 with different
architectures such as VGG16 [25], ResNet110 [4], DenseNet [6]



Table 1. Classification accuracy of ResNet20(Top-1%) on CIFAR-
10 and CIFAR-100 with different regularization methods. The value
of p is the best parameter decided by grid search.

Methods CIFAR-10 CIFAR-100

No Regularization 91.79 67.31
Dropout(p = 0.15) 92.20 68.11
Spatial Dropout(p = 0.1) 92.01 68.09
DropBlock(p = 0.2) 92.37 68.11
CorrDrop(Ours)(p = 0.1) 92.57 68.88

Cutout 92.49 69.01
Cutout + CorrDrop(Ours)(p = 0.03) 92.87 69.65
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Fig. 3. Test accuracy on CIFAR-10(a) and CIFAR-100(b) with dif-
ferent regularization methods during training.

and Wide Residual Network [26]. We add the regularization layer
after the first convolution group with block size of 9. Experimen-
tal results are shown in Table 2. For deep CNNs, dropout can not
effectively regularize the models. Compared with DropBlock, Cor-
rDrop can further improve the performance due to correlation based
dropout. The consistent improvement when regularized with Cor-
rDrop demonstrates that our method is practical for training deep
CNNs.

Table 2. Classification accuracy(Top-1%) on CIFAR-10 with differ-
ent architectures regularized by different methods.

Models Baseline Dropout DropBlock CorrDrop
(Ours)

VGG16 BN 93.83 93.57 93.35 94.09
ResNet110 93.61 93.65 94.15 94.38
DenseNet 95.32 95.31 95.55 95.78
WRN-28-10 95.98 95.96 96.38 96.50

4.4. Analysis of Hyper-parameters Choice

In this section, we test the sensitiveness of our algorithm to differ-
ent choices of hyper-parameters: the dropout probability p and block
size k. It is worth to mention that compared to DropBlock, our pro-
posed method do not introduce any additional hyper-parameters.

Choice of dropout probability In Fig. 4(a), we display the
test accuracy on CIFAR-10 with Dropout, DropBlock and CorrDrop
when applying different dropout probability. For fair comparison,
the regularization layers are added after the first convolution group
in ResNet20. For DropBlock and CorrDrop, the block size is set to 9.
Empirically, CorrDrop gains the best performance with the dropout
probability of 0.15. Compared with the other methods, CorrDrop
achieves better performance in most of different settings since that
we consider more semantic information when masking out features.

Choice of block size The classification model: ResNet20 in our
experiments has three groups of convolutional layers (res 1, res 2,
res 3) after each of which the size of feature map is halved. Specif-
ically, the size of feature map after each group are 32×32, 16×16,

8×8 respectively. In Fig. 4(b), we show the test accuracy of CIFAR-
10 when applying CorrDrop after different groups of convolutional
layers with different choices of block size (3, 5, 7, 9). We can gain
the best performance when applying CorrDrop after the first group
of convolutional layer with block size of 9. Since the size of feature
map is decreased in deep convolutional layers, the receptive filed in
deep layers is relatively larger than that in shallow layers, thus large
block size in shallow layer and small block size in deep layers can
better represent the local features. In our final implementation, we
use block size of 9, 7, 5 after res 1, res 2, res 3 respectively.
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Fig. 4. Subfigure (a) is the test accuracy on CIFAR-10 with different
choices of dropout probability. Subfigure (b) is the test accuracy on
CIFAR-10 with different choices of block size.

4.5. Activation Visualization

We also utilize the class activation mapping(CAM) [27] to visualize
the activation units of ResNet20 on images. From Fig. 5, DropBlock
randomly drops some regions in the feature maps forcing the model
to focus on a wide range of areas which generates a more distributed
representation. However, CorrDrop regularizes the model by mask-
ing out those uncorrelated regions in the feature maps which encour-
ages the model to focus on those meaningful regions for classifi-
cation (e.g. the main object regions). In general, the activation map
generated by model regularized with our method owes more compact
representation and highly activated regions towards main object.

Baseline

DropBlock

CorrDrop
(Ours)

Bird Dog Cat Horse Plane Truck

Fig. 5. Class activation mapping(CAM) [27] for ResNet20 trained
with no regularization, DropBlock [12] and CorrDrop.

5. CONCLUSION

In this paper, we propose a novel and effective structural dropout
variant CorrDrop to regularize CNNs, which remedies the prob-
lems of under- and over-dropping by considering the importance of
discriminative regions. Extensive classification experiments demon-
strate the superiority of CorrDrop compared with existing work and
its applicability to different architectures. Moreover, the visualiza-
tion of the activation map gives us an insight that our CorrDrop
method can force the model to learn a compact and meaningful
representation for classification.
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